Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation.
نویسندگان
چکیده
In the present work, we compare the use of antibodies (Ab) and phages as bioreceptors for bacteria biosensing by Electrochemical Impedance Spectroscopy (EIS). With this aim, both biocomponents have been immobilised in parallel onto interdigitated gold microelectrodes. The produced surfaces have been characterised by EIS and Fourier Transform Infra-Red (FTIR) Spectroscopy and have been applied to bacteria detection. Compared to immunocapture, detection using phages generates successive dual signals of opposite trend over time, which consist of an initial increase in impedance caused by bacteria capture followed by impedance decrease attributed to phage-induced lysis. Such dual signals can be easily distinguished from those caused by non-specific adsorption and/or crossbinding, which helps to circumvent one of the main drawbacks of reagentless biosensors based in a single target-binding event. The described strategy has generated specific detection of Escherichia coli in the range of 10(4)-10(7) CFU mL(-1) and minimal interference by non-target Lactobacillus. We propose that the utilisation of phages as capture biocomponent for bacteria capture and EIS detection allows in-chip signal confirmation.
منابع مشابه
Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR
Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...
متن کاملطراحی و ساخت نانو زیست ذرات فاژی نوترکیب به عنوان کاندیدای حامل واکسن ژنی- خوراکی
Background and Objective : Bacteriophage vectors recently have been considered as a gene transfer and vaccine delivery vehicles chiefly due to their low cost, safety, and physical stability. Since, little is known about phage mediated gene transfer in mammalian hosts, A group of invitro experiments were performed to ascertain gene transfercapability of these vehicles . Materials and Methods...
متن کاملThe molecular detection of the causative agent of plague on the basis of the pla gene
Yersinia pestis, a gram-negative rod belonging to the Enterobacteriaceae family, is the causative agent of plague. Classical methods of detecting the organisms are time-consuming, expensive and dangerous. The aim of the study was to design a Real-time PCR assay on the basis of the pla gene of Yersinia pestis. In this research the Real- time PCR test was optimized by using special primers for ta...
متن کاملDevelopment of a recombinant protein-based dot-blot hybridization assay for the detection of antibody to chicken infectious bronchitis virus
Nucleocapsid (N) protein of infectious bronchitis virus (IBV), one of the viral structural proteins, inducesstrong antibody response in natural infection. In this study, a simple, recombinant N protein-based dot-blottest was developed to serologically examine chicken serum samples for the presence of IBV antibody.Initially, 72 serum samples were tested for the presence of IBV antibody using a c...
متن کاملGrid Impedance Estimation Using Several Short-Term Low Power Signal Injections
In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2010